Novel Solvent-free Perovskite Deposition in Fabrication of Normal and Inverted Architectures of Perovskite Solar Cells
نویسندگان
چکیده
We introduced a new approach to deposit perovskite layer with no need for dissolving perovskite precursors. Deposition of Solution-free perovskite (SFP) layer is a key method for deposition of perovskite layer on the hole or electron transport layers that are strongly sensitive to perovskite precursors. Using deposition of SFP layer in the perovskite solar cells would extend possibility of using many electron and hole transport materials in both normal and invert architectures of perovskite solar cells. In the present work, we synthesized crystalline perovskite powder followed by successful deposition on TiO2 and cuprous iodide as the non-sensitve and sensitive charge transport layers to PbI2 and CH3NH3I solution in DMF. The post compressing step enhanced the efficiency of the devices by increasing the interface area between perovskite and charge transport layers. The 9.07% and 7.71% cell efficiencies of the device prepared by SFP layer was achieved in respective normal (using TiO2 as a deposition substrate) and inverted structure (using CuI as deposition substrate) of perovskite solar cell. This method can be efficient in large-scale and low cost fabrication of new generation perovskite solar cells.
منابع مشابه
Novel application of hybrid Perovskite materials in grid-connected photo-voltaic cells
In this paper, the novel application of organic/inorganic perovskite hybrid materials isproposed for grid-connected Photo-voltaic (PV) cells. The perovskite hybrid cells attracted a lot of interest due to their potential in combining advantages of both components. Looking to the future, there is no doubt that these new generations of hybrid materials, born from the very fruitful activitie...
متن کاملNucleation mediated interfacial precipitation for architectural perovskite films with enhanced photovoltaic performance.
Perovskite films are a promising candidate for future highly efficient and low-cost solar cells. The long diffusion length of charge carriers in the perovskite film makes its architecture fabrication seem unnecessary, while the rapid crystallization process increases the difficulty in its architecture fabrication. Here we show the fabrication of perovskite architectures through a nucleation med...
متن کاملبررسی اثر فازی آلومینا بر بلورینگی لایه پروسکایت در سلولهای خورشید پروسکایتی
Organic-inorganic perovskite (CH3NH3PbI3), due to an appropriate energy gap to absorb sunlight, is used as an absorbent layer in third generation solar cells. Crystallinity of light absorbing layer plays an important role in the performance of perovskite solar cells and substrate plays an important role on crystallinity of light absorbing layer. In superstructure solar cells, alumina (aluminum ...
متن کاملFilm-through large perovskite grains formation via a combination of sequential thermal and solvent treatment
"Film-through large perovskite grains formation via a combination of sequential thermal and solvent treatment" (2016). Organic–inorganic halide perovskites have recently attracted strong research interest for fabrication of high-performance, low-cost photovoltaic devices. Recently, we reported a highly reproducible procedure to fabricate high-performance organic–inor-ganic halide perovskite sol...
متن کاملModified deposition process of electron transport layer for efficient inverted planar perovskite solar cells.
A highly-efficient inverted heterojunction perovskite solar cell was prepared. A homogeneous and compact perovskite (CH3NH3PbI3) layer was prepared via a two-step solution deposition method, and subsequently a double-layer PCBM film was deposited by a sequential spin-coating/vapor deposition process as the electron transport layer. The optimised device could achieve a 12.2% (average 11.09%) eff...
متن کامل